
Journal Applied Mechanics and Technical Physics, Vol. 37, No. 1, 1996 

A S T U D Y  OF C O N T A C T  I N T E R A C T I O N  

OF T W O - L A Y E R  S H E L L S  

I. G. Emel 'yanov  UDC 539.3 

In solving problems of the stress-strain state of multilayer shell structures it is necessary to take into 
account the interaction conditions of adjacent layers. Most studies have dealt with problems of shell mechanics 
under the assumption that the mechanical contact of the layers is ideal. The current state of and approaches 
to solving the problems of the theory of multilayer shells with possible delamination zones are reflected in [1]. 

The purpose of this paper is to find an approach for analysis of two-layer shells of revolution taking 
into account the possible one-sided character of contact interaction concerning contact problems [2, 3]. The 
interaction of orthotropic layers over a contact region which was known in one direction was considered 
in [4]. The boundary surfaces of the layers were modeled by adhesive laminae with different bed moduli, 
thicknesses, and pull-off character of deformation. In this paper, the approach [4] is extended to the class of 
two-dimensional contact problems. As a result, the solution proposed enables us to determine the unknown 
contact region between the layers in two directions f~+(s, 0), the distribution of contact pressure q(s, 0), and 
the stressed state of a shell as a function of contact pressure and external loading. 

We assume that each layer of the two-layer shell is described by its own differential equations. It is also 
assumed that the layers obey geometrically and physically the conditions of the linear theory of shells, there 
are no stresses or strains, the temperature field is constant, and contact between the layers occurs without 
friction or slipping. When considering equidistant layers with clearance, the clearance must not exceed the 
shell thickness, since a geometrically linear theory is used. The starting system of equilibrium equations of 
shell layers interacting with each other has the form [5] 

L(i)y(i)  = f(i) _ (_ l ) i qAM,  i = 1, 2, A(s,O Ef t+ )  = 1, A(s,0 Ef t+)  = 0, (1) 

where i is the shell-layer number, L is a matrix differential operator, Y is the unknown vector of resolvent 
functions, f is the vector function of the external distributed load, M is a column matrix whose element 
corresponding to the equilibrium equation in projection on a vector normal to the surface ~+ is equal to unity 
with the other elements equal to zero, and s and 0 are meridional and circumferential coordinates on a shell 
surface. 

For many shell models, a governing system of equations written in a system of principal curvatures a 
and/3 has the form [6] 

OY 4 Omy 
Oa = ~-" am(a ,  f l ) ~ ~ - ~  +f(c~,fl) .  (2) 

rn :0  

Here, matrices A depend on geometrical and mechanical characteristics, while the dimension of vector Y and 
the order of the equations rn depend on shell model chosen. 

Taking (1) and (2) into account, we write a system of differential equations describing the contact 
interaction of layers of a shell of revolution as follows 

oy(i)  4 omy(i)  
- ~ a(im)(s,O) O0-------~-+f(i)(s,O)-(-1)iqAM, i =  1,2. (3) 

0S m=0 
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System (3) is to be supplemented by boundary conditions for two contours of each layer s = so and s = SL [6] 

(B are n x n/2  specified matrices, n is the dimension of Y, and b are specified vectors) and also the condition 
that one layer does not penetrate into another [5]. 

Since q appearing in system (3) is a function of two coordinates, this system describes the class of 
two-dimensional contact problems. We will use here the classical theory of anisotropic nonhomogeneous shells 
[6, 7]. 

One feature of the problems to be solved is investigation of the size of the unknown contact region 
f~+(s, 0), that is, problems with a free boundary, where the following condition must be satisfied 

q(s, 0 E fl+) ~> 0. (4) 

We supplement unknown contact region ft+ by delamination region Ft_ to a certain specified region f~ 
completely containing the free boundary. We divide the region f~ into equal parts in circumferential and 
meridional directions. Taking into account the small size of the elements obtained, we assume that interaction 
of shell layers can be represented by unknown forces X applied at a number of points of region f~; consequently, 

K N 
a = E E F , ; ,  

j i 

where F = ao x as is the area of a contact element, ao and as are the linear dimensions in the circumferential 
and meridional directions, and N and K are the numbers of elements along the circumference and meridian, 
respectively. 

Such discretization of region f~ [2, 31 enables problems of layer interaction to be reduced to well-known 
methods of analysis of the stress-strained state of orthotropic shells of revolution based on reduction of a 
boundary-value problem to a set of Cauchy problems using S. K. Godunov's orthogonalization [6]. 

Contact load (load due to interaction of the layers) can be represented by a certain number of unknown 
absolutely rigid connections, which are determined using the force method of structural mechanics. A canonical 
system of equations describing the contact condition for the layers of a ring cut out of the shell has the form 

X'" ~(1)V(1) ~(2) ~C(2) + + . . .  + + v x l ' )  + + : 0, 
i=1 i=l i=l 

E "q(1) V(1) ~(2)V(2) A(1) + + . . .  + Z kl + DX l + + 
i=1 i=1 i=1 

= 0 .  

(5) 

Here, 5 0 is the displacement in the basic system in the direction of the ith connection due to a unit force 
acting in the direction of the omitted j t h  connection, which is ARi is the value of clearance in the direction 
of the ith connection in problems of disconnected layers, /kpi is the displacement in the direction of the ith 
connection, which is caused by a specified external load acting on shell [3], D is an operator relating the reactive 
force at the ith point on the surface of possible elastic gaskets (or elastic properties of the microgeometry 
of the contacting surfaces) between the layers to its displacement [in the case of the Winkler model we have 
D = (CF)  -1, where C is the bed modulus], and N = 2to(ao) -1 (2to is the length of f~ in the circumferential 
direction), the terms which are not underlined define the coupling of the first ring for one-dimensional contact 
problems [4], and underlined ones define the influence of the remaining K - 1 rings on the first ring. The 
flexibility of a contact shell element (influence function) 5 0 appearing in (5) is constructed numerically by 
integrating the equations for each shell layer when unit step forces are distributed over each element [3]. 
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Taking into account the vertical symmetry of the problem with respect to section 0 = 0, we write 
system (5) in matrix form 

{x{x)}  

[HuH12. . .H1K]  {X(2)} + {A(p} + {A(~ )} = 0 ,  

{x(k)} 
where X~ 1) . . .X(~ ) . . . X ~ k ) . . . X ~  } are the vectors of the unknown forces of contact interaction (M = N/2); 

{A(P )} = {A(P~ �9 �9 �9 A(1)pMJ' is the vector of displacements of the first ring due to external forces P; {A(~ )} = 

A0) A(~) M} is the vector of clearances; and 
" ~ R 1  " " " 

gmp = 

wlmp + W2mp + ~5 ~p D 

(symmetrically) 

W2rnp -~- W 3 m p  W 3 m p  -~- W4rnp 

Wlmp+W4mp+~5*pD W2mp+WSmp 
�9 . . W M r n p - { - W M + l , r n  p 

� 9  W M - l , m p - ~ W M - 2 , m p  

�9 .. Wlmp+W2M,mp+~5*pD 

�9 (6) 

In matrix (6), trivariate indexing nrnp is introduced (n = 1-2M enumerates elements along the 
circumference, m = I - K  enumerates rings, and p = I - K  enumerates the ring, on which a unit force acts), 
~5~p is the Kronecker delta, and wi = ~1i and eSij = ~ji ( i  -= 1, . . . ,  N ) .  

In the same way we construct coupling conditions for all K rings and reduce them to the system 

[Htl] [H,2] 
[H2 ] [H=I 

[gky] [gk2] 

�9 . - [ H l k ]  
. . .  [H2k] 

. . .  [Hkk] 

{x(')} 
{ x ( 2 ) }  

{x (k}}  

{A(,')} 

+ 

{A(})} 

{A{2} 

+ 

) } 

= 0 (7) 

System (7) consists of K x M equations and contains K x M unknowns�9 Consequently, equations 
defining contact interactions (7) corresponding to the first approximation can be written as a system of linear 
algebraic equations 

[AI /{X} /=  {Bp} j  + {/3R}i, J = 1, {8) 

where vector {Bp} j  on the right-hand side is found by integrating a shell layer, to which an external load is 
applied. 

In solving problems with two-sided connections (when delamination does not occur) system (8) defines 
completely the vector of contact pressures {q} = X i F  -1, i = 1, . . . ,  M. In solving problems with one-sided 
connections [8], condition (4) must be satisfied and it is necessary to find a resolvent system such that contact 
pressure is positive on the contact regions of the shell layers and equal to zero in possible zones of delamination. 
To determine those unknowns which are to be eliminated, we use the method of successive approximations, 
which is usually employed for solving contact problems numerically [5, 9], the essence of which is to construct 
a j th  approximation using the preceding (j - 1)th approximation on the condition that connections are absent 
at those regions where X < 0. 

In solving problems for layers connected by glue lamina when the working ability of the glue joint under 
stretching is limited, the problem is solved as in the case of one-sided connections; however the condition of 
breaking of nonworking connections has the form X i / F  < % (c~g is the cohesive strength of the glue joint). 

Determination of the stress-strain state of the shell under consideration comes down to integration of 
the equations for each shell layer for external load P and the contact load determined in [3] 

{ Q E } = { P } + { Q } ,  { Q } j E f l + ,  { P } E a 0  

(f~0 is the shell surface on which the vector of external load is applied). 
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TABLE 1 

1 

K 

1 0.7373 
2 2.6450 
3 5.2840 
4 8.8920 
5 12.33 
6 12.33 
7 8.884 
8 5.273 
9 2.636 

10 0.7352 

M 

q, MPa 

0 0 0.2469 
0 0 0.4716 
0 0 0.6646 
0 0 0.7784 
0 0 0.7752 

0 0 0.6586 

0 0 0.4640 

0 0 0.2413 

0 0 0.6580 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

Since the function of the total  load {QE} defined on a set of contact elements is an even periodic 
function with period 2M,  it can be expanded into a Fourier cosine series [2, 10]. The expansion coefficients 
for the j t h  ring have the form 

2 (j) ~(j) irk 1 
a~ j) =--~ qEo + Z cos i+ ( - )  qEM], =0. 

As an example i l lustrat ing the above method we have considered the interact ion of coaxial cylindrical 
shells of the same length (L = 0.1524 m) and thickness (h = 0.254- 10 -z m). This problem of interaction of 
separated shells (layers) has been t reated in [5, 11]. Two shells (the radius of the inner shell is R2 = 0.0762 m) 
are fixed rigidly with clearance A R = 0.0127.10 -2 m. The inner shell is loaded with pressure p = 20.67 MPa. 
The shell material  is isotropic and characterized by Young's modulus E = 2.1 �9 ]0 s MPa and Poisson's ratio 
v = 0.3. The division angle for the circumference is A0 = 30 ~ 

In this problem, the number  of divisions of the shells in the circumferential direction N is of no principal 
significance. However, an increase in the number  of divisions of the shells in the meridionaI direction K leads 
to a bet ter  i l lustration of the edge effect. A solution has been obtained for two values of contact-element length 
in the meridional direction as. In the first case, half of region fl is approximated by 60 contact elements with 
area F = aoa3 = 3.99 �9 1.524 = 6.08 cm 2. Hence, the order of the matr ix  in (6) is M = 6 and that  in (7) 
is K = 10. Since the external  load and clearance are axisymmetrical  and the problem is symmetrical  with 
respect to section s = 0.5L, the contact  pressure q is axisymmetrical  and given for a quarter of region ~. 

In Fig. 1 we show the contact  pressure distribution along the meridian of the shell. Curves 1 and 2 
correspond to calculations performed for bed modulus C = 100Cr and 500Cr (the value Cr = 108 N / m  3 
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TABLE 2 

1 
K 

1 0.734 
2 2.634 
3 5.266 
4 8.870 
5 12.31 

I 2 

-0.221 
-0.8757 
-1.892 
-3.026 
-3.822 

M 

q, MPa 

-0.217 0.655 
-0.6981 0.2404 
-1.148 0.4618 
-1.445 0.6542 
-1.594 0.767 

I 5 6 

-0.0003 
-0.008 
-0.0286 
-0.05497 
-0.07451 

-0.0068 
-0.023 
-0.0404 
-0.054 
-0.062 

corresponds to elastic properties of vacuum rubber [9]). Curves 3 and 4, which refine curves 1 and 2, were 
obtained using a smaller division step along the meridian, the area of contact element being F = aoas = 
3.99 �9 0.762 = 3.04 cm 2 (M = 6 and K = 20). Curve 5 represents numerical solution [5]. A solution of the 
problem close to the solution obtained here has been found analytically in [11]. 

Distribution of the contact pressure q along the circumference (M = 1---,-,6) and the meridian (K = 1, 10) 
for the case of nonaxisymmetrical loading of a two-layer shell (without clearance) is given in Table 1. External 
loading is represented by the force P = 10,000 distributed over the area Fp = ao2as centered at s = L/2 and 
0 = 0 and applied to the external layer. A solution is found for the case of F = 6.08 cm 2 and C = Cr. An 
indirect confirmation of the correctness of our calculations is that the solution is symmetric with respect to 
section s = 0.5L. The value of the bed modulus C chosen for calculations which imitates the microroughness 
of the surfaces in contact and also the elastic properties of the glue lamina and the cohesive strength of the 
glue joint % = 0 provides for contact at the point where the force P is applied (K = 5, 6 and M = 1) and 
the appearance of complicated delamination zones. 

The distribution of q (interlaminar stress) for the case where there is no delamination is given in 
Table 2. It follows from the above results that the case considered here can be realized if the cohesive strength 
of the glue joint is % > 3.822 MPa (K = 5 and M = 2). 

Thus, the approach in question and its realization using stable numerical methods enable us to 
determine contact stresses in layered shells, to determine delamination zones unknown in two directions, 
and to take into account nonhomogeneous adhesive laminae, the one-sided character of the interaction of 
layers, and material anisotropy. 
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